Teaching Geometry through Problem-Based Learning and Creative Design

Wen-Haw Chen
Department of Applied Mathematics
Tunghai University
Taichung 40704, Taiwan, R. O. C.
whchen@thu.edu.tw

Abstract—Problem-based learning (PBL) model can help students self-learning from the problems. In particular, it can help them to integrate the knowledge and concepts previously learned in the classroom. This paper presents an approach to integrate the concept of creative design into a problem-oriented learning model, which is based on the geometry contents included in mathematics curriculum. Our goal is to set a model of teaching to integrate the geometry concepts in high school mathematics. In addition to master the geometric concepts, students will create their own creation with geometric knowledge and personal or group style under this teaching model. It will enhance the effectiveness of teaching and learning geometry.

Keywords—problem-based learning, creative design, geometry teaching

I. INTRODUCTION

An important topic in teaching and learning mathematics is how to help students integrate and apply learned mathematical concepts. Some students invested a lot of time and effort in every chapter of their mathematics curriculum. They may cope with a small range of assessment testing. However, they often meet the lack of the ability to integrate learned concepts, which is often "see the tree forest" problem. This problem leads in addition bad performance to a wide range of assessment tests, and the study of related college course such as calculus. While continuing to practice solving problems may improve the performance of examinations, but only the real mastery of relevance and flexibility of learned mathematics concepts will enhance positively students' mathematics literacy. In this paper, we will present an approach to enhance the effectiveness of geometry teaching through the problem-based learning (PBL) model incorporated creative design. Our goal is to improve geometry teaching and help students to integrate and apply the learned knowledge.

Recently, PBL method has been practiced broadly in the academic domain to facilitate self-learning when students are required to implement self-learning through questions. The core concepts of PBL are using professional knowledge, goal setting, problem resolution, and evaluation of the results. PBL is applicable to various scenarios, although slight adjustments of the PBL process are necessary. Moreover, PBL has the following characteristics:

- Initiating learning with a real problem.
- Connection between the cognition and professional knowledge of the learners and the problems.
- Learning in small groups.
- A self-oriented learning model.
- Teachers or experts are considered helpers, not leaders.

Therefore, the main idea in this paper bases on students' cognition and focuses on students’ creativity. Students are encouraged in classroom to construct their own work by the geometric concepts learned in mathematics curriculum.

However, although students have learned how to calculate the surface area, volume, and the trigonometric functions, conic sections with space vector concepts, they may be unable to integrate the mathematical knowledge to design the final geometric work. Therefore, it is necessary to develop learning activities to guide students in creative design. These activities have to meet students' learning interest as well as taking into account the effect of individual learning goals. This approach will first develop some problems by researchers and teachers to integrate geometric concepts, and then grouped students in learning activities to the construction of the different products involving geometric knowledge in the works.

II. PROBLEM-BASED LEARNING AND CREATIVE DESIGN

PBL can be defined from various perspectives. Barrows and Tamblyn [2] define PBL as the process in which learners learn knowledge by understanding or solving specific problems. Other studies (e.g., Fogarty [11]) have considered PBL as a course model that focuses on real-world problems. Trop and Sage [19] considered PBL as experiential learning because it can be employed as a curriculum organizer and a teaching strategy. Schmidt [16] and Walton and Matthews [20] indicated that PBL is a learning method and can be used to explain the process of learning and teaching. Numerous studies believed that PBL was initially developed as a teaching method for training medical students to discuss and solve clinical medical problems; and a student-centered and real problem solving apprenticeship-style contextualized teaching method or strategy that anchors learning and teaching to the problem itself. (Boud and Feletti [6]; Bridges and Hallinger [7]; Delisle [9]; Dods [10]; Hoffman and Ritchie [13]; Hmelo and Lin [12]; Norman [14]; Norman and Schmid [15]). Barrows [3] also indicated that PBL is a flexible teaching method, the definition
of which may differ in accordance with the teaching design and the skill of teachers. Briefly, one can conclude that PBL has the following characteristics.

(1) Using an ill-structured problem as the focus of organizing a curriculum and scenario of learning.

The most crucial characteristic of PBL is to focus on an ill-structured problem to organize a curriculum and learning scenario and to initiate teaching and learning processes, thereby inspiring students to learn, explore, and develop the necessary professional knowledge and problem-solving tools required in the future (Barrows [4]; Fogarty [11]). The primary feature of unstructured problems is that each problem may differ according to individual learner backgrounds; thus, the problem is difficult and may not have a single correct solution or formula. During the investigation of unstructured problems, students are able to develop skills of meta-cognition that allows them to monitor, critique, and direct their own inference skills through problem-solving (Barrows [3]). Therefore, an appropriately designed problem is the most crucial element in PBL.

(2) Learners become stakeholder.

PBL is a student-centered teaching and learning model. Students can pursue meaning and understanding of matters through self-directed learning (Barrows [4]; Boud & Feletti [6]; Trop & Sage [19]). When solving a problem, a special role is given to students. This role contributes to the students’ association to the old and new knowledge, understanding of the importance of special problem-solving strategies, and how to re-apply the problem-solving strategies in the future.

(3) Teacher as a trainer in cognition and meta-cognition.

When teaching with a PBL approach, teachers must assume the role of a curriculum designer, learning or question-solving partner, supporter and director of learning, and evaluator of learning results (Barrows [3]; Bridges & Hallinger [7]; Delisle [9]; Stepien & Gallagher [18]; Trop & Sage [19]). Teachers manage the process of PBL by adjusting the PBL process, role-playing, and monitoring students’ participation. In addition, evaluations are constantly performed throughout the process to determine the learning progress and results of students (Trop & Sage [19]).

(4) Encouraging group cooperation and learning.

According to Barrows [3], group cooperation and learning is a necessary feature of PBL. Each group member must cooperate with each other as a learner and question-solver. Providing and perceiving different viewpoints that are shared among group members are useful for the clarification of complex matters, thereby improving the efficiency of cooperation. Group discussion is also useful for teaching individuals to cope with different viewpoints, and to facilitate high-level cognitive skills such as inference and knowledge-building. Moreover, group discussion also assists students in expressing their own understanding and perspectives when they are unable to convince other group members.

(5) Multiple evaluation methods.

PBL is a constructivism-based teaching and learning model. Therefore, the evaluation of PBL is based on constructivism, cognitive psychology, and situational learning, and meets the teaching and evaluation requirements in scientific education. Proponents of PBL typically advocate numerous evaluation methods, and perform authentic assessment using attractive, valuable, significant, and real questions that target specific evaluation standards, thereby fully demonstrating the learning process and results. Furthermore, students’ abilities can be shown and provided as a feedback for course efficiency. Previous studies have tended to categorize the evaluation of PBL as “content,” “process,” and “outcomes” (Barrows & Tamblyn [2]). Inference skills, question-solving intelligence, group work, and communication skills can be evaluated by those conducting the three categories of PBL evaluation (Barrows [3]; Barrows & Tamblyn [2]; Walton & Matthews [20]).

Moreover, PBL has been considered by a number of higher educational institutions in many parts of the world as a method of delivery, and is a total pedagogical approach to education that focuses on helping students develops self-directed learning skills. It derives from the theory that learning is a process in which the learner actively constructs new knowledge on the basis of current knowledge. PBL provides students with the opportunity to gain theory and content knowledge and comprehension. PBL helps students develop advanced cognitive abilities such as creative thinking, problem solving and communication skills.

The following figure (Awang & Ramly [1]) shows the flowchart of problem solving process in Problem-based Learning approach. PBL exercises typically proceed through four phases – problem presentation, problem investigation, problem solution and process evaluation. The problem would be a real-world situation, complex and open-ended that will challenge higher-order thinking, creativity and synthesis of knowledge (Steinemann [17]). Problem-Based Learning helps students develop creative thinking skills such as cooperative and interdisciplinary problem solving. Students learn to work both independently and collaboratively. Even though students engage in self-directed learning through PBL, they regularly convene to share, evaluate and critique each other’s work during the group meeting. They deal with multiple and often conflicting goals and values, work with constraints and determine the most appropriate action to take.
In addition facilitates the acquisition of knowledge, group learning has another desirable attributes such as communication skills, teamwork, problem solving, independent responsibility for learning, sharing information and respect for others. Therefore PBL can a small group teaching method that combines the acquisition of knowledge with the development of generic skills and attitudes. Presentation of technical material as the stimulus for learning enables students to understand the relevance of underlying scientific knowledge and principles in technical practice.

A widely used of creativity tests is Torrance Tests of Creative Thinking (TTCT) (Barrows [9]-[10]). There are three creative abilities measured by these tests, which are originality, fluency and flexibility. These abilities are defined as:

- originality: the ability to produce uncommon or unique responses;
- fluency: ability to produce a large number of ideas;
- flexibility: the ability to produce a variety of ideational themes or categories.

Edward De Bono identified the uses of creativity. Creativity becomes part of normal thinking and can therefore be applied to any situations that require thinking (De Bono [7]). There are three aspects to for creativity:

1. **Defining the focus or creative task:**

 There may be problems that arise and identify themselves. Individuals make definite creative focuses. There may be an obvious creative need. All these are ways in which creative focuses can emerge.

2. **Structure for the deliberate application of the systematic creative thinking tools:**

 Once the creative focus has been defined, it can be subjected to deliberate creative thinking. This can be done by groups or individuals or a combination of both in a discussion session among group members. It often happens that the group that has the concern or problem will organize its own deliberate creative thinking session to tackle the problem.

3. **Evaluation and implementation of the output of the creative thinking:**

 The group that has the creative focus may also be involved in evaluating the ideas that come out of the deliberate creative thinking. In such cases the process is continuous. If the “thinking” group is different from the “implementation” group, attention has to be paid to the transfer of ideas so that those expected to act on the idea are brought in at an early enough stage to feel some ownership in the new ideas.

 Learning with creative thinking is important to be creative at each stage of discussion including the definition of thinking task, the structure for applying thinking process, the output of thinking effort, and the evaluation and implementation needs to be creative.

III. APPLY TO GEOMETRY TEACHING

To apply PBL together with creative design to geometry teaching, teachers are encouraged to use methodologies to promote creative thinking and students are encouraged to be innovative and come up with creative products. Students can be encouraged to participate in this process by enabling them to become aware of the ways in which they think, learn and problem-solve. The way of thinking will also attempts to involve students in the teaching learning process through evaluations of what is taking place during learning and can provide a window into the student’s thinking processes.

Here is an example of applying PBL together with creative design to geometry teaching. We wish to integrate the geometric concepts including space vector, lines and planes in the space, and conic sections etc. Students are encouraged to design a simple lamp involving these concepts. Its external appearance may be a polyhedron or a prism, and then the concepts about planes in space, dihedral, surface area and volume can be involved. Reflection properties of conic sections can be used to design the interior of the lamp. Group meeting and discussion is necessary to finish the final work.

We use the model consists of four phases; Search, Solve, Create and Share (Model SSCS) to introduce our example.

TABLE I. MODEL SSCS

<table>
<thead>
<tr>
<th>Phase</th>
<th>Content</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>Brainstorming to identify problem,</td>
<td>Problem: What are the</td>
</tr>
</tbody>
</table>
generate a list of ideas to explore, put into question format and focus on investigation.

differences among an ellipse, a parabola and a hyperbola? How can you apply the knowledge to your daily life?

Solve

| Geometric concepts: Definitions and equations of an ellipse, a parabola and a hyperbola, and their reflection properties. Integrate the geometric concepts including space vector, lines and planes in the space, and conic sections etc. |

| Design a product: Students design a simple lamp with external appearance may be a polyhedron or a prism, and the interior may involve the reflection properties of conic sections. The concepts about planes in space, dihedral, surface area and volume can be can be used to design. |

Create

| Students create a product in a small scale to the problem solution, reduce the data to simpler levels of explanation, and present the results as creatively as possible such using charts, poster or model. |

| Students design a product: Students design a simple lamp with external appearance may be a polyhedron or a prism, and the interior may involve the reflection properties of conic sections. The concepts about planes in space, dihedral, surface area and volume can be can be used to design. |

Share

| Students communicate their findings, solution and conclusions with teacher and students, articulate their thinking, receive feedback and evaluate the solutions. |

| Presentation: Group meeting and discussion is necessary to finish the final work. Students present their works and receive feedback. Teachers can evaluate the effectiveness. |

IV. CONCLUSION

We present an approach to enhance the effectiveness of geometry teaching through the problem-based learning model incorporated creative design. Our goal is to present PBL as an instructional model that could encourage the creative design during the geometry teaching learning process. We hope it will improve geometry teaching and help students to integrate and apply the learned knowledge.

ACKNOWLEDGMENT

This project is partially supported by Taiwan NSC grants (NSC 101-2511-S-029-002).

REFERENCES