Joint Demonstration and Evaluation Platform for SoS based on Cloud Computing

Zhang Jing¹, He Yan¹, Ma Hui², Chen Li-li¹, Zhang Bin¹, Chen Xiao-yang¹

1 Science and Technology on Complex System Simulation Laboratory
Beijing Institute of System Engineer, Beijing, China
zhangjing.benben@gmail.com
2 Postbox 3602, Zhoushan Road, Luoyang City, Henan Province, China

Abstract - System of Systems (SoS) has various elements and the inner relationships are complex. Furthermore, the borderlines of it are changed dynamically and uncertainly. It is necessary to organically integrate all the elements with all the joint methods to analysis and evaluate the capability and efficiency of SoS. In order to insure the tightness of analysis and evaluation procedure, the Joint Demonstration and Evaluation Platform for SoS (JD&EP-SoS) should be designed and realized. Based on analyzing the mission and requirements of Joint Demonstration and Evaluation for SoS, the design and realization requirements of JD&EP-SoS were studied, the disadvantages of several existing relevant systems were clarified. According to comparing the SoS characteristics with cloud computing technology, JD&EP-SoS was designed based on cloud computing. Finally, the practical scheme and architecture for design and realization of JD&EP-SoS were proposed, the prototype was completed and some applications were given.

Keywords: SoS(System of Systems), Joint Demonstration and Evaluation, Cloud Computing, X on-Requirement, SOA(Service Oriented Architecture).

1 Introduction

SoS analysis and evaluation, SoS-A&E for short, is a kind of decision activity on development of SoS, which could insure the science and validity of the decision activity. SoS is very complex, immersed, structural and uncertain [1, 2, 3], which need to design and realize effective methods and tools for SoS analysis and evaluation to improve the science and validity. Therefore, it is important and urgent to design and realize Joint Demonstration and Evaluation Platform for SoS.

Meanwhile, it is necessary to consider all the effect factors to SoS, but these elements are always distributed, saved by different team, and could play special role in the different process of analysis and evaluation. Therefore, it must combine all elements with the joint method to analysis and evaluate the capability and efficiency of SoS. JD&EP-SoS should support the analytical mode and can run intelligently and efficiently, and customized by demands.

The paper studied deeply the demand and requirements of designing and realizing JD&EP-SoS, discussed the present situation and disadvantages of regular SoS demonstration and evaluation supporting systems. The paper proposed the principle, overall plan and key technologies, analyzed the correlation between cloud computing and SoS research requirements comprehensively, and completed the system general design and overall software framework based on the cloud computing theory and technology. Then the JD&EP-SoS prototype was fulfilled after some key problems were solved, such as the X on-Requirement service technology, etc. and has been put into application to deal with some SoS analysis issues.

2 Requirements Analysis of JD&EP-SoS

2.1 Essential Demands

JD&EP-SoS generally includes universal technological tools and implementation measures which can support Joint Demonstration and evaluation and could serve the complex SoS. Precisely, according to the demand of SoS, JD&EP-SoS is a kind of basic programming framework and application programming system/tools, which could be applied in the all procedure and various tasks of Joint Demonstration and evaluation. Meanwhile, the framework and system/tools serve the all procedure of analysis and evaluation and emphasize the feature of Information System’s function and application.

Therefore, JD&EP-SoS could standardize the procedure of Joint Demonstration and evaluation. It should support all the key steps during SoS demonstration and evaluation, such as analysis discussion, scenario development, modeling and simulation, simulation evaluation, dynamic analysis, resource management, coordinated operating, etc. JD&EP-SoS is an integrated, standardized, flexible and exoteric Joint Demonstration and Evaluation Platform for SoS.

¹ Project Supported by the National Science Foundation of China (Grant No. 61203140)
evaluation environment, which could be customized, can schedule resource independently and operate more efficiently.

2.2 Related Work

It is a universal method to establish specialized, comprehensive, integrated Joint Demonstration and Evaluation Environment to assist evaluation for SoS research and application. For example, since 1990’s, based on the all services and arms’ experience, USA has initiated unified modeling and simulation system framework, such as JMASS, JSIMS, JWARS, JICM,FLAMES and put it into practice, which had improved the evaluation ability level greatly[4].

Especially, on the global strategy research and long-term programme research of weapons, USA paid more attention to application of simulation system and applied these systems into weapons lifecycle including demands analysis, conception design, weapon type development, simulation experiments, and weapon disposition. USA has put into a large number of human and funds to some significant weapons simulation system and has formed the implement specification, theory and technology of joint demonstration and evaluation.

Although SoS research began recently in China, it aroused much attention. And developing kinds of supported software or tools was also started for more than 10 years. The basic general supporting applications and engineering criterion were established, and some basic data and models were developed and accumulated.

2.3 Development Requirements

Now SoS research is still in the embryonic stage, and mainly serves single and special designated task. In order to meet the SoS characteristics and requirements, the software must satisfy the joint need. So the main functions which JD&EP-SoS should support were listed as follows.

1) JD&EP-SoS should be a technological support environment which could be adapted to the demands of different kinds and different application background tasks;

2) JD&EP-SoS should be executed under the pattern of integrated, comprehensive, cooperative mode.

3) JD&EP-SoS should meet all the demands of SoS research and should be more flexible, efficient and repeatable according to the idea of varied application, open structure, coordinated operating, X on-Requirement, etc..

4) JD&EP-SoS should establish standard, unified, integrated analysis and evaluation procedure and operating pattern which should be explicit and adapt to the SoS researcher’s habits.

5) Strengthen JD&EP-SoS’s application and carry out its extensive validation widely. Moreover, to develop basic models and implement the continued data accumulation and interactive sharing of resource by JD&EP SoS.

3 High Level Design of JD&EP-SoS

3.1 Basic principles

The Determinants of the effectiveness and availability of the JD&EP-SoS could be in essence abstracted for seven aspects of the mission requirements, software architecture, key technologies, execution pattern, applied process, user, and application, as shown in Figure 1.

![Figure 1. Impact factors of JD&EP-SoS](image)

Although the first five factors could be looked on as the internal causes and should be solved by the system itself. Mission Requirements specify the objectives that the system design should achieved. Software Architecture guides the design, implementation and improvement. Key Technologies support the core functions of system. Execution Pattern affects the availability and practicality of system. Applied Process specify and enhance the application ability of the system. The latter two factors are external factors, which can affect the system development application and effectiveness. Users include direct users and indirect users. The direct users are the related demonstration staff/institutions, who use the system directly to support its day-to-day works of various demonstration and evaluation. Indirect users are the superior officers of the various demonstration institution, who do not use the system directly, but to use the data and conclusions resulted by demonstration and evaluation based system. And Application refers to the system be used by different users to earnestly solve specific problems. All the seven elements affect and restrict each other. Thus, Effective solutions must be established, since only balanced development can promote the improvement and the capacity of SoS-A&E.

3.2 General Scheme

JD&EP-SoS requires an open software architecture, which could provide service-oriented solutions to a variety
of technique or application problems involved with the system design, development and appliance. The resources of SoS analysis, including basic data, model, and utility software or tools, could be treated as series of services. Then different kinds of services could be further composed and scheduled in a loosely-coupled, well-coordinated way. The general scheme was designed based on service-oriented theory and illustrated by Figure 2.

The general architecture contains a series of service sets for different JD&EP-SoS tasks. The service sets can be organized as a layered structure; from bottom to up they are Infrastructural, General, Technical, Business, Application service. Each layer is composed of a series of services. The services in the same layer could be invoked by each other, and the upper layer can invoke the services of lower layer. The invocations, either on the same layer or across layers, must conform to the unified standard or specification. Through the unified interface, middleware, infrastructure, process, and encapsulation, the mechanism of service composition and execution can be properly implemented.

To ensure all the services could be managed and scheduled by JD&EP-SoS, they should obey some specifications and protocols to provide the unified interface, act as the unified middleware, execute under the unified process, as encapsulate in the unified formation. So the specifications and protocols would be one of the most important factors.

The **Infrastructural Services Layer (ISL)** refers to the underlying network environment, a variety of general-purpose /specific-purpose hardware and software equipment, which are necessary in the whole process of system design, development, execution and maintenance, DDEM (Design, Development, Execution, & Maintenance) for short. Meanwhile, the fundamental data of JD&EP-SoS reside in the infrastructure services layer, so as to constitute the foundation hardware and software environment of DDEM system, and provide related support functions in the form of services.

The **General Services Layer (GSL)** includes a variety of basic public services that not directly related to the SoS-A&E tasks in the system DDEM process, including packaging and integration services, data access services, information directory services, logging services, document management services, two-dimensional graphics services, 3D rendering services, middleware services, which provide the underlying technology for supporting the organic functioning of the platform.

The **Technical Services Layer (TSL)** includes the various technical services with direct relations to SoS-A&E tasks in the system DDEM process. It directly support the implementation and use of key technologies of the platform. It mainly include technology services for requirements analysis of SoS, technology services for SoS demonstration data build / shared, technology services for demonstration task decomposition and scheduling, and so on, to form a set of technology-oriented system of joint demonstration and assessment service means. These services form a complete set of technology service means for JD&EP-SoS.
The Business Services Layer (BSL) refers to the specific business required to carry out for JD&EP-SoS. It mainly includes demonstration seminar, requirements analysis, scenario development, modeling constructing, simulation development, experiment management, synthetically evaluation, demonstration, resource management, collaborative operation, and so on, which play roles in the delicate phase. By scheduling customized business services, achieve flexible organization for different A&E tasks. It provides synthetical management services, to implement the unified use of system, independent call, centralized management and co-operation.

The Application Services Layer (ASL) refers to the relevant outcomes which are formed by gradual accumulation in the long-running process and closely associated with specific applications.

And Figure 3 gives a description of the composition of the Business Service Layer. It’s composed of several modules, such as Synthetical Management Module, Demonstration Seminar Module, Requirement Analysis Module, SoS Structure Design Module, Scenario Development Module, Modelling Constructing Module, Simulation Developing Module, Experiment Management Module, Synthetical Evaluation Module, Demonstration Module, Resource Management Module, and Verification and Validation Module. And the grey shadows in Figure 3 meant the specifications and protocols to package and schedule each module in different layers.

4 The scheduling technique of SoS evaluation resources based on cloud computing

Cloud computing is a mean of information processing and develops rapidly in recent years and has made a wide range of applications and tremendous benefits of commercialization [5]. In essence, cloud is a computational model, which distributes computing tasks among the resource pool of a large number of computers, enabling users to on-demand, timely access to the computing power, storage space and information services. Its features and requirements of SoS share many similarities, thus the cloud is particularly suitable to solve the problems of complex structure, large scale, diversity applications, hierarchy, massive data, and efficient computation. Although the cloud is mainly applied in the commercial field, but as a new theory and technology, its highly integrated, advanced

| Table 1 Features of Cloud Computing VS. Requirements of SoS Research |
|-----------------------------|---------------------------------|---------------------------------|
| **characteristics** | **Requirements of SoS** | **Features of Cloud Computing** |
| Scale of processing | Depends on the complexity of target problem | Elastic; scale according to the complexity of target problem |
| Pattern of application | Complex, various; high demand on timeliness | Varied; suitable for frequent request and high concurrency |
| Computing capacity | High-demand; high-Ultra-real-time; often need large-scale of computing resource | High-demand; need to provide services and response in time |
| Pattern of execution | Based on LAN; executable on a single machine or a cluster | Based on the Internet; distributed |
| resource storage | Unified storage for authoritative data, public data and experiment data; sharing on demand; supporting local copies of | Unified storage and management; no local data copies |
| Security demand | Very high | High |
| Basic data | Complex types; large amount; big data | Complex types; large amount |
| Granularity computing | Hierarchical relationships between different applications; need different approaches | Provides multi-granularity/varying-granularity services for applications |
| Human-machine interaction | Need human-in-circuit analysis for researches as Confrontation Simulation, etc | Suitable for different types of users, scenes with many user interactions |
| Usage mechanism | Application should be separated from the framework, allowing users to develop applications easily, conveniently and seamlessly | Being agile and flexible based on some standard, which is mature and easy to use |

concepts, ingenious design and efficient performance, should attract the attention of SoS researchers. With its guidance, it is expected to solve part of the hard problem, and may even have a revolutionary impact.
4.1 The nature and pattern of cloud computing

While cloud computing still lacks a precise definition and common understanding has not yet unified, the characteristics and usage patterns of it can be summarized as follows, that is a technology facilitating large-scale, low-cost computing units with a network connection to provide a variety of services. With the support of cloud computing, the applications do not need to run on the user's PC, mobile phones and other terminal equipments, but running in a network of large-scale server clusters; data processed by users does not need to store locally, but stored in the data center of the network; the services provider of cloud computing is responsible for the management and maintenance of the data center; the users can access the services of any business at any time and any place, with any terminal equipment in any way on the network. As a result, we achieve the use-on-demand on the cloud.

At the mean time, cloud computing should meet the following requirements: 1) large-scale processing, a cloud computing system is a cluster consisting nodes of a certain scale; 2) smoothly expansion, the cluster system should have good scalability and flexibility; 3) resources sharing, the system can provide one or more forms of resource pools, and can be further abstracted and integrated to offer a variety of application services; 4) dynamic allocation, which requires automatic resource allocation management, including real-time monitoring of resources, and automatic scheduling.

4.2 Principles of the cloud

Cloud computing is a result of mashing multiple technologies up. It’s mature enough to play an important role in Civilian area, and it has generated huge economical benefits. According to the abstraction of various kind of resources, cloud system is classified into 3 types, namely IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS (Software as a Service). These types of cloud provide the users with services from generic to specific, respectively.\[6\]

IaaS cloud systems, such as Amazon’s EC2 (Elastic Cloud Computing), encapsulate hardware appliances into a service for the user. In a PaaS system, the user is equivalently using a bare machine with disk(s), so he has the option to run any operating system. The system gives the users an illusion of “unlimited” resources, so as to use the resources more efficiently, but it also forces the users themselves to think about how to coordinate the resources. PaaS cloud systems, such as GAE (Google App Engine), provides an executing environment to the user’s application. PaaS systems take the charge of dynamic scaling and fault tolerance of various resources, freeing the user’s application from the coordination of nodes, while giving users much less options. Users have to use specific editing environment as well as programming pattern. For example, GAE only gives the options of Python language, Java language, GAE SDK and a web framework Django to users for developing online service applications. SaaS systems have stronger pertinence and specificity by encapsulating a certain software into a service. For example, salesforce.com provides a CRM service. With the rapid development of cloud computing, the above mentioned cloud systems penetrate each other and melt together, in order to provide more convenient and complete service.

4.3 Using cloud computing to schedule the resources of SoS Evaluation

Clouding is a form of high-performance computing that centers on data, with its specific patterns and technologies on data storage, data management, programming model, concurrency control and system management. In order to effectively provide various services with huge amount of resources, cloud computing comprehensively uses various technologies as virtualization, distributed storage, parallel programming, data modeling, resource management, platform management, granularity computing, security management, green computing, etc. These technologies that can be applied directly on System of System Evaluation include virtualization, distributed storage for mass data, parallel programming, multi-granularity/varying-granularity computing, complex system coordination, security management, etc. With these technologies, we can effectively solve the problems currently found in developing SoS Joint Evaluation Platform, such as lacking of advanced and efficient SoS analysis and processing methods, lacking of a universal framework that describes the activities of System of System Evaluation. Although it still remains to be in the stage of theoretical research and feasibility analysis, we think cloud computing is worth a try for solving the bottle neck problems in System of System research, according to the success stories of cloud computing.

According to the demand of SoS Joint Evaluation system, we have designed and implemented a cloud-based basic framework to schedule various resources of SoS Evaluation including models, data, systems and humans, as shown in figure 4. With the mechanisms of cloud computing, we organically integrate the users, tasks, application requests and the service requests from terminal devices. And we use cloud systems to provide unified and efficient computing resource, storage resource and management mechanism. Because of the diverse nature of SoS research, this giant “cloud” will certainly fully cover IaaS, PaaS and SaaS. For example, Joint Exercise Deployment can base on IaaS, whereas model-driven development \[1\] and integration would use PaaS, and
resource verification, model certification and report generation will be SaaS. Figure 5 shows the main GUI of a system based on this. There are different sections in the interface to organize different processes of demonstration & evaluation (D&E). User could execute all the businesses to complete a special D&E mission in the same software environment and utilize all the resources stored in the supporting platform. Furthermore, all the hardware, data, model, application system, and so on, divided in the distributed network background, could also be utilized to operate cooperatively.

5 Conclusions

According to the mission of SoS research of present stage and its progress, we should focus on the following 5 points: 1) based on technologies of complex system coordination, build system framework of SoS research; 2) based on the computing-centric approach, design solutions of supporting environment for SoS Joint Evaluation, Joint Exercise, Joint Run; 3) based on data center, plan and construct the project of SoS research data; 4) based on services, start hierarchical and multi-purpose SoS research; 5) strengthen research on supporting technologies and basic services.